Article ID Journal Published Year Pages File Type
9447830 Journal of Arid Environments 2005 15 Pages PDF
Abstract
One of the most general types of stress experienced by plants is water-limitation, which becomes particularly pronounced during periods of drought. We evaluated fluctuating asymmetry (FA) in Quercus undulata leaves for two subsequent dry years: 2001, when precipitation was 25% below average, and 2002, when precipitation was 65% below average, from a plot receiving ambient water and one in which water was excluded. In the first and less severe drought year, ambient-water trees had a slightly higher index of FA than the water-exclusion trees, contrary to expectations. However, in the second and much more extreme drought year, water-exclusion trees exhibited greater FA as expected, but in additional observations water-supplement trees exhibited by far the greatest amount of FA, contrary to expected. Further data on plant water potential confirmed that degree of plant stress corresponded to plot treatments: water exclusion>ambient water>water supplement. Stable carbon isotope ratios indicated that trees on the water-supplement plots were less stressed than ambient-water and water-exclusion trees, and leaf size was much greater for water-supplement trees than ambient-water or water-exclusion trees. We hypothesize that the complexity of the results could be due to the confounding effects of relative vs. absolute stress.
Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,