Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9457938 | Applied Geochemistry | 2005 | 16 Pages |
Abstract
Seven coal and carbonaceous mudstone samples were collected from outcropping Jurassic coal beds, on the margin of the Dingxi Basin, Northwestern China. The n-alkane distributions in all of the samples are characterised by high concentrations of the C19-C29 homologues, and very much lower amounts outside of this range. C23 or C24 are usually the most abundant n-alkanes. Straight chain n-alkanes from C23 to C29 show moderate odd-to-even C number predominances (CPI range: 1.26-2.70). Long-chain acyclic n-alkan-2-ones, n-alkan-3-ones and n-alkan-4-ones ranging from C15 to C33 with moderate odd-to-even C number predominances, were detected together with one isoprenoid methyl ketone (6,10,14-trimethylpentadecan-2-one) in all of the samples. The C number distributions of the three series of alkanones show a similar distribution to that of the n-alkanes, but the correspondence is not sufficient to substantiate a product-precursor relationship. It can be concluded that the n-alkan-2-ones are a mixture of the products of microbially-mediated β-oxidation of corresponding n-alkanes in the sediments and from the microbial oxidation of higher plant-derived n-alkanes prior to incorporation in the sediments. The n-alkan-3-ones and n-alkan-4-ones were formed from microbially mediated oxidation of the corresponding n-alkanes in the γ and δ positions, respectively. Generation of the ketones from higher plant n-fatty alcohols and n-alkanoic acids could be a possible way to form some of the ketones observed, but it can only play a minor role in the samples analysed.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
Jincai Tuo, Qiong Li,