Article ID Journal Published Year Pages File Type
9461754 Comptes Rendus Geoscience 2005 10 Pages PDF
Abstract
At the planetary scale, the models consistently simulate an intensification of the hydrological cycle in a future climate, warmer than the present-day one. However, this intensification might be accompanied by its slowing down due to an increase of the residence time of water vapour in the atmosphere. The impact of climate change on extreme events is even more difficult to evaluate, as results are dependent on methods, emission scenarios and, above all, on models. However, the increase of extreme winter precipitation over northern Europe is a common feature of these evaluations. The hydrological cycle, through the geographical distribution of continental surface humidity, seems to play a key role on the possibility to detect the warming in France. To cite this article: S. Planton et al., C. R. Geoscience 337 (2005).
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , ,