Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9476850 | Advances in Water Resources | 2005 | 12 Pages |
Abstract
In this paper we combine a multiscale data integration technique introduced in [Lee SH, Malallah A, Datta-Gupta A, Hidgon D. Multiscale data integration using Markov Random Fields. SPE Reservoir Evaluat Eng 2002;5(1):68-78] with upscaling techniques for spatial modeling of permeability. The main goal of this paper is to find fine-scale permeability fields based on coarse-scale permeability measurements. The approach introduced in the paper is hierarchical and the conditional information from different length scales is incorporated into the posterior distribution using a Bayesian framework. Because of a complicated structure of the posterior distribution Markov chain Monte Carlo (MCMC) based approaches are used to draw samples of the fine-scale permeability field.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth-Surface Processes
Authors
Y. Efendiev, A. Datta-Gupta, I. Osako, B. Mallick,