Article ID Journal Published Year Pages File Type
9480721 Estuarine, Coastal and Shelf Science 2005 14 Pages PDF
Abstract
Previous work conducted in two seagrass areas of different nutrient status, along the Kenyan coast, has shown that the seagrasses were characterised by differences in the species composition and biomass of epiphytic algae. This study was undertaken to evaluate the productivity patterns of the seagrass species growing in these same sites. Studies were made on Thalassodendron ciliatum (Forskål) den Hartog, Thalassia hemprichii (Ehrenberg) Aschers and Cymodocea rotundata Ehrenberg and Hempr. ex Ascherson growing in the lagoons of Nyali and Vipingo, along the Kenyan coast, during the South East (SE) and North East (NE) monsoon periods. The results of this study revealed differences in the levels of nitrate within the water column, with Vipingo having lower levels of around 4 μM during the low tide period of the SE monsoon while nitrate levels in Nyali reached levels of 16 μM during the same period. Of the three seagrass species studied, C. rotundata had the highest shoot densities in both sites. The shoot densities of C. rotundata reached levels of 1300 shoots m−2 compared to an average of 600 shoots m−2 for both T. ciliatum and T. hemprichii. The stems of T. ciliatum were found to be 200 mm long in Nyali whereas those in Vipingo were 80 mm in length. Of the three seagrasses T. ciliatum and T. hemprichii showed significant differences in total leaf growth between the two sites. However, of these two species, only T. hemprichii showed distinct differences in leaf production and biomass when the two sites were compared. Leaves of T. hemprichii showed growth rates of 0.008 g dw shoot−1 day−1 in Nyali while the growth rate in Vipingo was 0.004 g dw shoot−1 day−1. Leaf production rates were approximately 0.005 g dw shoot−1 day−1 for T. ciliatum in both Nyali and Vipingo and that of C. rotundata was approximately 0.0015 g dw shoot−1 day−1 in the two sites. This suggests that of the three species studied, T. hemprichii may have been influenced by the nutrient input in Nyali. The abundance of epiphytes on the stems of T. ciliatum was higher in Nyali during both seasons; therefore we suggest that although the composition of epiphytic species is the main indicator of nutrient enrichment in these areas the enhanced productivity of T. hemprichii may be another indicator of the nutrient status of these study sites.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,