Article ID Journal Published Year Pages File Type
9495424 Journal of Functional Analysis 2005 41 Pages PDF
Abstract
We construct conjugate operators for the real part of a completely non-unitary isometry and we give applications to the spectral and scattering theory of a class of operators on (complete) Fock spaces, natural generalizations of the Schrödinger operators on trees. We consider C*-algebras generated by such Hamiltonians with certain types of anisotropy at infinity, we compute their quotient with respect to the ideal of compact operators, and give formulas for the essential spectrum of these Hamiltonians.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,