Article ID Journal Published Year Pages File Type
9495900 Journal of Functional Analysis 2005 21 Pages PDF
Abstract
The Helgason Fourier transform on noncompact Riemannian symmetric spaces G/K is generalized to the homogeneous vector bundles over the compact dual spaces U/K. The scalar theory on U/K was considered by Sherman (the local theory for U/K of arbitrary rank, and the global theory for U/K of rank one). In this paper we extend the local theory of Sherman to arbitrary homogeneous vector bundles on U/K. For U/K of rank one we also obtain a generalization of the Cartan-Helgason theorem valid for any K-type.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,