| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 9498373 | Linear Algebra and its Applications | 2005 | 4 Pages | 
Abstract
												We first settle an open problem of Balakrishnan from Linear Algebra Appl. 387 (2004) 287-295. Further, if Ci¯(n,k1,k2,â¯,km), n â N, k1 < k2 < â¯Â < km < n/2, ki â N for i = 1, 2, â¦, m, denotes a circulant graph with the vertex set V = {0, 1, â¦, n â 1} such that a vertex u is adjacent to all vertices of Vâ§¹{u} except u ± ki (mod n), i = 1, 2, â¦, m, we show that for any given k1 < k2 < â¯Â < km almost all circulant graphs Ci¯(n,k1,k2,â¦,km) are hyperenergetic.
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Algebra and Number Theory
												
											Authors
												Dragan StevanoviÄ, Ivan StankoviÄ, 
											