Article ID Journal Published Year Pages File Type
9500282 Applied and Computational Harmonic Analysis 2005 16 Pages PDF
Abstract
Inspired by papers of Vese-Osher [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and Osher-Solé-Vese [Image decomposition and restoration using total variation minimization and the H−1 norm, Technical Report 02-57, 2002] we present a wavelet-based treatment of variational problems arising in the field of image processing. In particular, we follow their approach and discuss a special class of variational functionals that induce a decomposition of images into oscillating and cartoon components and possibly an appropriate 'noise' component. In the setting of [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and [Image decomposition and restoration using total variation minimization and the H−1 norm, Technical Report 02-57, 2002], the cartoon component of an image is modeled by a BV function; the corresponding incorporation of BV penalty terms in the variational functional leads to PDE schemes that are numerically intensive. By replacing the BV penalty term by a B11(L1) term (which amounts to a slightly stronger constraint on the minimizer), and writing the problem in a wavelet framework, we obtain elegant and numerically efficient schemes with results very similar to those obtained in [Modeling textures with total variation minimization and oscillating patterns in image processing, Technical Report 02-19, 2002] and [Image decomposition and restoration using total variation minimization and the H−1 norm, Technical Report 02-57, 2002]. This approach allows us, moreover, to incorporate general bounded linear blur operators into the problem so that the minimization leads to a simultaneous decomposition, deblurring and denoising.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,