Article ID Journal Published Year Pages File Type
9500440 Differential Geometry and its Applications 2005 14 Pages PDF
Abstract
First, we derive a new second variation formula which holds for minimal Legendrian submanifolds in Sasakian manifolds. Using this, we prove that any minimal Legendrian submanifold in an η-Einstein Sasakian manifold with “nonpositive” η-Ricci constant is stable. Next we introduce the notion of the Legendrian stability of minimal Legendrian submanifolds in Sasakian manifolds. Using our second variation formula, we find a general criterion for the Legendrian stability of minimal Legendrian submanifolds in η-Einstein Sasakian manifolds with “positive” η-Ricci constant.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,