Article ID Journal Published Year Pages File Type
9500476 Differential Geometry and its Applications 2005 25 Pages PDF
Abstract
This article studies the inverse problem of the calculus of variations for the special case of the geodesic flow associated to the canonical symmetric bi-invariant connection of a Lie group. Necessary background on the differential geometric structure of the tangent bundle of a manifold as well as the Fröhlicher-Nijenhuis theory of derivations is introduced briefly. The first obstructions to the inverse problem are considered in general and then as they appear in the special case of the Lie group connection. Thereafter, higher order obstructions are studied in a way that is impossible in general. As a result a new algebraic condition on the variational multiplier is derived, that involves the Nijenhuis torsion of the Jacobi endomorphism. The Euclidean group of the plane is considered as a working example of the theory and it is shown that the geodesic system is variational by applying the Cartan-Kähler theorem. The same system is then reconsidered locally and a closed form solution for the variational multiplier is obtained. Finally some more examples are considered that point up the strengths and weaknesses of the theory.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,