Article ID Journal Published Year Pages File Type
9500685 Journal of Approximation Theory 2005 19 Pages PDF
Abstract
Cardinal polysplines of order p on annuli are functions in C2p-2Rn⧹0 which are piecewise polyharmonic of order p such that Δp-1S may have discontinuities on spheres in Rn, centered at the origin and having radii of the form ej, j∈Z. The main result is an interpolation theorem for cardinal polysplines where the data are given by sufficiently smooth functions on the spheres of radius ej and center 0 obeying a certain growth condition in j. This result can be considered as an analogue of the famous interpolation theorem of Schoenberg for cardinal splines.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,