Article ID Journal Published Year Pages File Type
9501567 Journal of Differential Equations 2005 28 Pages PDF
Abstract
We first introduce and analyze a variant of the deterministic single-substrate chemostat model. In this model, microbe removal and growth rates depend on biomass concentration, with removal terms increasing faster than growth terms. Using a comparison principle we show that persistence of all species is possible in this scenario. Then we turn to modelling the influence of random fluctuations by setting up and analyzing a stochastic differential equation. In particular, we show that random effects may lead to extinction in scenarios where the deterministic model predicts persistence. On the other hand, we also establish some stochastic persistence results.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,