Article ID Journal Published Year Pages File Type
9501666 Journal of Differential Equations 2005 33 Pages PDF
Abstract
The reductions of the Heun equation to the hypergeometric equation by polynomial transformations of its independent variable are enumerated and classified. Heun-to-hypergeometric reductions are similar to classical hypergeometric identities, but the conditions for the existence of a reduction involve features of the Heun equation that the hypergeometric equation does not possess; namely, its cross-ratio and accessory parameters. The reductions include quadratic and cubic transformations, which may be performed only if the singular points of the Heun equation form a harmonic or an equianharmonic quadruple, respectively; and several higher-degree transformations. This result corrects and extends a theorem in a previous paper, which found only the quadratic transformations. (SIAM J. Math. Anal. 10 (3) (1979) 655).
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,