Article ID Journal Published Year Pages File Type
9501701 Journal of Differential Equations 2005 74 Pages PDF
Abstract
We extend the Kreiss-Majda theory of stability of hyperbolic initial-boundary-value and shock problems to a class of systems, notably including the equations of magnetohydrodynamics (MHD), for which Majda's block structure condition does not hold: namely, simultaneously symmetrizable systems with characteristics of variable multiplicity, satisfying at points of variable multiplicity either a “totally nonglancing” or a “nonglancing and linearly splitting” condition. At the same time, we give a simple characterization of the block structure condition as “geometric regularity” of characteristics, defined as analyticity of associated eigenprojections. The totally nonglancing or nonglancing and linearly splitting conditions are generically satisfied in the simplest case of crossings of two characteristics, and likewise for our main physical examples of MHD or Maxwell equations for a crystal. Together with previous analyses of spectral stability carried out by Gardner-Kruskal and Blokhin-Trakhinin, this yields immediately a number of new results of nonlinear inviscid stability of shock waves in MHD in the cases of parallel or transverse magnetic field, and recovers the sole previous nonlinear result, obtained by Blokhin-Trakhinin by direct “dissipative integral” methods, of stability in the zero-magnetic field limit. We also discuss extensions to the viscous case.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,