Article ID Journal Published Year Pages File Type
9501750 Journal of Differential Equations 2005 20 Pages PDF
Abstract
In this paper, we consider the Arnold conjecture on the Lagrangian intersections of some closed Lagrangian submanifold of a closed symplectic manifold with its image of a Hamiltonian diffeomorphism. We prove that if the Hofer's symplectic energy of the Hamiltonian diffeomorphism is less than a topology number defined by the Lagrangian submanifold, then the Arnold conjecture is true in the degenerated (nontransversal) case.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,