Article ID Journal Published Year Pages File Type
9502742 Journal of Mathematical Analysis and Applications 2005 6 Pages PDF
Abstract
Analytical solutions to the backward Kolmogorov PDE ∂p∂t+b(y,t)22∂2p∂y2+a(y,t)∂p∂y=0 are very dependent on the functional form of b(y,t) and a(y,t). We suggest one solution technique for obtaining analytical solutions via the use of an adiabatic approximation to the Schrödinger PDE. This approximation takes the specific form of a so-called WKB (W = Wentzel [G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Z. Phys. 38 (1926) 518-529], K = Kramers [H. Kramers, Wellenmechanik und halbzahlige Quantisierung, Z. Phys. 39 (1926) 828-840], B = Brillouin [L. Brillouin, La mécanique ondulatoire de Schrödinger: une méthode générale de résolution par approximations successives, C. R. Acad. Sci. 183 (1926) 24-26]) approximation. We provide for two examples, in financial option pricing, where we show how the proposed approximation could be of use.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,