Article ID Journal Published Year Pages File Type
9502759 Journal of Mathematical Analysis and Applications 2005 17 Pages PDF
Abstract
In this paper we investigate a vector optimization problem (P) where objective and constraints are given by set-valued maps. We show that by mean of marginal functions and suitable scalarizing functions one can characterize certain solutions of (P) as solutions of a scalar optimization problem (SP) with single-valued objective and constraint functions. Then applying some classical or recent results in optimization theory to (SP) and using estimates of subdifferentials of marginal functions, we obtain optimality conditions for (P) expressed in terms of Lagrange or sequential Lagrange multipliers associated with various coderivatives of the set-valued data.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,