Article ID Journal Published Year Pages File Type
9502775 Journal of Mathematical Analysis and Applications 2005 15 Pages PDF
Abstract
In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1(Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1(Ω) does not apply, in fact the restriction of H1(Ω) functions is not necessarily in L2(∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2(Ω) and we obtain an a priori estimate for the second derivatives of the solution.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,