Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9502868 | Journal of Mathematical Analysis and Applications | 2005 | 12 Pages |
Abstract
Let X,Y be vector spaces. It is shown that if an even mapping f:XâY satisfies f(0)=0, and (â)(2Clâ1dâ2âCldâ2âClâ2dâ2)r2f(âj=1dxjr)+âι(j)=0,1âj=1dι(j)=lr2f(âj=1d(â1)ι(j)xjr)=(Cldâ1+Clâ1dâ1+2dâ2Clâ1âCldâ2âClâ2dâ2)âj=1df(xj) for all x1,â¦,xdâX, then the even mapping f:XâY is quadratic. Furthermore, we prove the Cauchy-Rassias stability of the functional equation (â) in Banach spaces.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Choonkil Baak, Seong-Ki Hong, Myoung-Jung Kim,