Article ID Journal Published Year Pages File Type
9502898 Journal of Mathematical Analysis and Applications 2005 10 Pages PDF
Abstract
A Banach space operator T∈B(X) is said to be totally hereditarily normaloid, T∈THN, if every part of T is normaloid and every invertible part of T has a normaloid inverse. The operator T is said to be an H(q) operator for some integer q⩾1, T∈H(q), if the quasi-nilpotent part H0(T−λ)=(T−λ)−q(0) for every complex number λ. It is proved that if T is algebraically H(q), or T is algebraically THN and X is separable, then f(T) satisfies Weyl's theorem for every function f analytic in an open neighborhood of σ(T), and T∗ satisfies a-Weyl's theorem. If also T∗ has the single valued extension property, then f(T) satisfies a-Weyl's theorem for every analytic function f which is non-constant on the connected components of the open neighborhood of σ(T) on which it is defined.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,