Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9502947 | Journal of Mathematical Analysis and Applications | 2005 | 14 Pages |
Abstract
We consider planar cubic systems with a unique rest point of center-focus type and constant angular velocity. For such systems we obtain an affine classification in three families, and, for two of them, their corresponding phase portraits on the Poincaré sphere. We also prove that for two of these families there is uniqueness of limit cycle. With respect the third family, we give the bifurcation diagram and phase portraits on the Poincaré sphere of a one-parameter sub-family exhibiting at least two limit cycles.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
A. Gasull, R. Prohens, J. Torregrosa,