Article ID Journal Published Year Pages File Type
9503002 Journal of Mathematical Analysis and Applications 2005 22 Pages PDF
Abstract
The effect of population dispersal among n patches on the spread of a disease is investigated. Population dispersal does not destroy the uniqueness of a disease free equilibrium and its attractivity when the basic reproduction number of a disease R0<1. When R0>1, the uniqueness and global attractivity of the endemic equilibrium can be obtained if dispersal rates of susceptible individuals and infective individuals are the same or very close in each patch. However, numerical calculations show that population dispersal may result in multiple endemic equilibria and even multi-stable equilibria among patches, and also may result in the extinction of a disease, even though it cannot be eradicated in each isolated patch, provided the basic reproduction numbers of isolated patches are not very large.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,