Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9503026 | Journal of Mathematical Analysis and Applications | 2005 | 10 Pages |
Abstract
By using a well-known fixed point index theorem, we study the existence, multiplicity and nonexistence of positive T-periodic solution(s) to the higher-dimensional nonlinear functional difference equations of the form x(n+1)=A(n)x(n)+λh(n)f(x(nâÏ(n))),nâZ, where A(n)=diag[a1(n),a2(n),â¦,am(n)],h(n)=diag[h1(n),h2(n),â¦,hm(n)],aj,hj:ZâR+, Ï:ZâZ are T-periodic, j=1,2,â¦,m, T⩾1; λ>0, x:ZâRm, f:R+mâR+, where R+m={(x1,â¦,xm)TâRm:xj⩾0,j=1,2,â¦,m}, R+={xâR:x>0}.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Yongkun Li, Linghong Lu,