Article ID Journal Published Year Pages File Type
9503051 Journal of Mathematical Analysis and Applications 2005 16 Pages PDF
Abstract
It is well known that the critical Hölder regularity of a subdivision schemes can typically be expressed in terms of the joint-spectral radius (JSR) of two operators restricted to a common finite-dimensional invariant subspace. In this article, we investigate interpolatory Hermite subdivision schemes in dimension one and specifically those with optimal accuracy orders. The latter include as special cases the well-known Lagrange interpolatory subdivision schemes by Deslauriers and Dubuc. We first show how to express the critical Hölder regularity of such a scheme in terms of the joint-spectral radius of a matrix pair {F0,F1} given in a very explicit form. While the so-called finiteness conjecture for JSR is known to be not true in general, we conjecture that for such matrix pairs arising from Hermite interpolatory schemes of optimal accuracy orders a “strong finiteness conjecture” holds: ρ(F0,F1)=ρ(F0)=ρ(F1). We prove that this conjecture is a consequence of another conjectured property of Hermite interpolatory schemes which, in turn, is connected to a kind of positivity property of matrix polynomials. We also prove these conjectures in certain new cases using both time and frequency domain arguments; our study here strongly suggests the existence of a notion of “positive definiteness” for non-Hermitian matrices.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,