Article ID Journal Published Year Pages File Type
9503084 Journal of Mathematical Analysis and Applications 2005 12 Pages PDF
Abstract
A convolution of Rayleigh functions with respect to the Bessel index can be treated as a special function in its own right. It appears in constructing global-in-time solutions for some semilinear evolution equations in circular domains and may control the smoothing effect due to nonlinearity. An explicit representation for it is derived which involves the special function ψ(x) (the logarithmic derivative of the Γ-function). The properties of the convolution in question are established. Asymptotic expansions for small and large values of the argument are obtained and the graph is presented.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,