Article ID Journal Published Year Pages File Type
9503094 Journal of Mathematical Analysis and Applications 2005 22 Pages PDF
Abstract
We call a rational map f dendrite-critical if all its recurrent critical points either belong to an invariant dendrite D or have minimal limit sets. We prove that if f is a dendrite-critical polynomial, then for any conformal measure μ either for almost every point its limit set coincides with the Julia set of f, or for almost every point its limit set coincides with the limit set of a critical point c of f. Moreover, if μ is non-atomic, then c can be chosen to be recurrent. A corollary is that for a dendrite-critical polynomial and a non-atomic conformal measure the limit set of almost every point contains a critical point.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,