Article ID Journal Published Year Pages File Type
9503117 Journal of Mathematical Analysis and Applications 2005 16 Pages PDF
Abstract
The goal of this article is to study the relations among monotonicity properties of real Banach lattices and the corresponding convexity properties in the complex Banach lattices. We introduce the moduli of monotonicity of Banach lattices. We show that a Banach lattice E is uniformly monotone if and only if its complexification EC is uniformly complex convex. We also prove that a uniformly monotone Banach lattice has finite cotype. In particular, we show that a Banach lattice is of cotype q for some 2⩽q<∞ if and only if there is an equivalent lattice norm under which it is uniformly monotone and its complexification is q-uniformly PL-convex. We also show that a real Köthe function space E is strictly (respectively uniformly) monotone and a complex Banach space X is strictly (respectively uniformly) complex convex if and only if Köthe-Bochner function space E(X) is strictly (respectively uniformly) complex convex.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,