Article ID Journal Published Year Pages File Type
9503166 Journal of Mathematical Analysis and Applications 2005 11 Pages PDF
Abstract
For infinite horizon nonlinear optimal control problems in which the control term enters linearly in the dynamics and quadratically in the cost, well-known conditions on the linearised problem guarantee existence of a smooth globally optimal feedback solution on a certain region of state space containing the equilibrium point. The method of proof is to demonstrate existence of a stable Lagrangian manifold M and then construct the solution from M in the region where M has a well-defined projection onto state space. We show that the same conditions also guarantee existence of a nonsmooth viscosity solution and globally optimal set-valued feedback on a much larger region. The method of proof is to extend the construction of a solution from M into the region where M no-longer has a well-defined projection onto state space.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,