Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9503253 | Journal of Mathematical Analysis and Applications | 2005 | 9 Pages |
Abstract
The Kuhn-Tucker type necessary optimality conditions are given for the problem of minimizing the sum of a differentiable function and a convex function subject to a set of differentiable nonlinear inequalities on a convex subset C of Rn, under the conditions similar to the Kuhn-Tucker constraint qualification or the Arrow-Hurwicz-Uzawa constraint qualification. The case when the set C is open (not necessarily convex) is shown to be a special one of our results, which helps us to improve some of the existing results in the literature.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Zengkun Xu,