Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9503289 | Journal of Mathematical Analysis and Applications | 2005 | 18 Pages |
Abstract
Consider a renewal process, and let K⩾0 denote the random duration of a typical renewal cycle. Assume that on any renewal cycle, a rare event called “success” can occur. Such successes lend themselves naturally to approximation by Poisson point processes. If each success occurs after a random delay, however, Poisson convergence can be relatively slow, because each success corresponds to a time interval, not a point. If K is an arithmetic variable, a “finite-size correction” (FSC) is known to speed Poisson convergence by providing a second, subdominant term in the appropriate asymptotic expansion. This paper generalizes the FSC from arithmetic K to general K. Genomics applications require this generalization, because they have already heuristically applied the FSC to p-values involving absolutely continuous distributions. The FSC also sharpens certain results in queuing theory, insurance risk, traffic flow, and reliability theory.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
John L. Spouge,