Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9506905 | Applied Mathematics and Computation | 2005 | 18 Pages |
Abstract
A new partitioning feedforward neural network (FNN) root-finder model for recursively finding the arbitrary (including complex) roots of higher order arbitrary polynomials is proposed in this paper. Moreover, an efficient complex version of constrained learning algorithm (CLA), which incorporates the a priori information, i.e., the constrained relation between the original polynomial coefficients and the remaining polynomial coefficients plus the partitioned roots out from the original polynomial, is constructed to train the corresponding partitioning neural root-finder network for finding the arbitrary roots of arbitrary polynomials. Finally, the experimental results are given to show the efficiency and effectiveness of our proposed neural model with respect to traditional non-neural root-finders.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
De-Shuang Huang, H.S.Ip Horace, C.K. Law Ken, Zheru Chi, H.S. Wong,