Article ID Journal Published Year Pages File Type
9506905 Applied Mathematics and Computation 2005 18 Pages PDF
Abstract
A new partitioning feedforward neural network (FNN) root-finder model for recursively finding the arbitrary (including complex) roots of higher order arbitrary polynomials is proposed in this paper. Moreover, an efficient complex version of constrained learning algorithm (CLA), which incorporates the a priori information, i.e., the constrained relation between the original polynomial coefficients and the remaining polynomial coefficients plus the partitioned roots out from the original polynomial, is constructed to train the corresponding partitioning neural root-finder network for finding the arbitrary roots of arbitrary polynomials. Finally, the experimental results are given to show the efficiency and effectiveness of our proposed neural model with respect to traditional non-neural root-finders.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , , ,