Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9507117 | Applied Mathematics and Computation | 2005 | 5 Pages |
Abstract
A suitable periodic boundary conditions for a functional differential equations xÌ(t)=f(t,x,xt) are conditions of the form x0(θ)=x2Ï(θ). In this paper we use the notion of upper and lower solutions coupled with monotone iterative method to prove the existence of solutions of this periodic boundary value problem.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Mustapha Yebdri, Sidi Mohammed Bouguima, Ovide Arino,