Article ID Journal Published Year Pages File Type
9509355 Journal of Computational and Applied Mathematics 2005 19 Pages PDF
Abstract
In this paper, we propose a new affine scaling trust-region algorithm in association with nonmonotonic interior backtracking line search technique for solving nonlinear equality systems subject to bounds on variables. The trust-region subproblem is defined by minimizing a squared Euclidean norm of linear model adding the augmented quadratic affine scaling term subject only to an ellipsoidal constraint. By using both trust-region strategy and interior backtracking line search technique, each iterate switches to backtracking step generated by the general trust-region subproblem and satisfies strict interior point feasibility by line search backtracking technique. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. The results of numerical experiments are reported to show the effectiveness of the proposed algorithm.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,