Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9509389 | Journal of Computational and Applied Mathematics | 2005 | 16 Pages |
Abstract
In a recent paper, a nonmonotone spectral projected gradient (SPG) method was introduced by Birgin et al. for the minimization of differentiable functions on closed convex sets and extensive presented results showed that this method was very efficient. In this paper, we give a more comprehensive theoretical analysis of the SPG method. In doing so, we remove various boundedness conditions that are assumed in existing results, such as boundedness from below of f, boundedness of xk or existence of accumulation point of {xk}. If âf(·) is uniformly continuous, we establish the convergence theory of this method and prove that the SPG method forces the sequence of projected gradients to zero. Moreover, we show under appropriate conditions that the SPG method has some encouraging convergence properties, such as the global convergence of the sequence of iterates generated by this method and the finite termination, etc. Therefore, these results show that the SPG method is attractive in theory.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Changyu Wang, Qian Liu, Xinmin Yang,