Article ID Journal Published Year Pages File Type
9509639 Journal of Computational and Applied Mathematics 2005 11 Pages PDF
Abstract
Sequential quadratic programming (SQP) has been one of the most important methods for solving nonlinearly constrained optimization problems. In this paper, we present and study an active set SQP algorithm for inequality constrained optimization. The active set technique is introduced which results in the size reduction of quadratic programming (QP) subproblems. The algorithm is proved to be globally convergent. Thus, the results show that the global convergence of SQP is still guaranteed by deleting some “redundant” constraints.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,