Article ID Journal Published Year Pages File Type
9511194 Journal of Computational and Applied Mathematics 2019 20 Pages PDF
Abstract
Many inverse problems can be described by a PDE model with unknown parameters that need to be calibrated based on measurements related to its solution. This can be seen as a constrained minimization problem where one wishes to minimize the mismatch between the observed data and the model predictions, including an extra regularization term, and use the PDE as a constraint. Often, a suitable regularization parameter is determined by solving the problem for a whole range of parameters -e.g. using the L-curve -which is computationally very expensive. In this paper we derive two methods that simultaneously solve the inverse problem and determine a suitable value for the regularization parameter. The first one is a direct generalization of the Generalized Arnoldi Tikhonov method for linear inverse problems. The second method is a novel method based on similar ideas, but with a number of advantages for nonlinear problems.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,