Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9511280 | Journal de Mathématiques Pures et Appliquées | 2005 | 20 Pages |
Abstract
Let T be a closed positive current of dimension p in Cn and H an analytic subvariety of Cn of dimension nâq(1⩽q⩽p). We denote by ãT,Hã the slice of T in H if it exists. We consider the functions on ]0,+â[ defined by nT(r)=râ2pâ«|z|⩽rTâ§Î²p and nT(H,r)=râ2(pâq)â«|z|⩽rãT,Hãâ§Î²pâq. The aim of this paper is to establish relationship between the growth of these functions. We prove results generalizing those of L. Gruman in [Séminaire Lelong-Skoda 1981-1983, Lecture Notes in Math., vol. 1028, Springer-Verlag, Berlin, 1983, pp. 125-162] and B. Molzan, B. Shiffman and N. Sibony in [Math. Ann. 257 (1981) 43].
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Moufida Amamou, Slaïm Ben Farah,