Article ID Journal Published Year Pages File Type
9511515 Applied Numerical Mathematics 2005 27 Pages PDF
Abstract
FETI and BDD are two widely used substructuring methods for the solution of large sparse systems of linear algebraic equations arising from discretization of elliptic boundary value problems. The two most advanced variants of these methods are the FETI-DP and the BDDC methods, whose formulation does not require any information beyond the algebraic system of equations in a substructure form. We formulate the FETI-DP and the BDDC methods in a common framework as methods based on general constraints between the substructures, and provide a simplified algebraic convergence theory. The basic implementation blocks including transfer operators are common to both methods. It is shown that commonly used properties of the transfer operators in fact determine the operators uniquely. Identical algebraic condition number bounds for both methods are given in terms of a single inequality, and, under natural additional assumptions, it is proved that the eigenvalues of the preconditioned problems are the same. The algebraic bounds imply the usual polylogarithmic bounds for finite elements, independent of coefficient jumps between substructures. Computational experiments confirm the theory.
Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , ,