Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9513625 | Discrete Mathematics | 2005 | 8 Pages |
Abstract
Let B denote the set of values of b for which there exists a block design with b blocks and for k⩾3, let Bk denote the subset of B determined by the designs with block size k. We present some information about B and the sets Bk. In particular, we discuss, for certain integers h, the question as to whether there exist integers k and kâ² such that the equation bâ²=b+h has infinitely many solutions b,bâ² satisfying bâBk and bâ²âBkâ². The study is restricted to the case λ=1.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
H.L. Abbott, D.R. Hare,