Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9516328 | Topology | 2005 | 24 Pages |
Abstract
Let X be a smooth projective curve of genus g⩾3 and let M0 be the moduli space of semistable bundles over X of rank 2 with trivial determinant. Three different desingularizations of M0 have been constructed by Seshadri (Proceedings of the International Symposium on Algebraic Geometry, 1978, 155), Narasimhan-Ramanan (C. P. Ramanujam-A Tribute, 1978, 231), and Kirwan (Proc. London Math. Soc. 65(3) (1992) 474). In this paper, we construct a birational morphism from Kirwan's desingularization to Narasimhan-Ramanan's, and prove that the Narasimhan-Ramanan's desingularization (called the moduli space of Hecke cycles) is the intermediate variety between Kirwan's and Seshadri's as was conjectured recently in (Math. Ann. 330 (2004) 491). As a by-product, we compute the cohomology of the moduli space of Hecke cycles.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology
Authors
Insong Choe, Jaeyoo Choy, Young-Hoon Kiem,