Article ID Journal Published Year Pages File Type
9516605 Topology and its Applications 2005 8 Pages PDF
Abstract
It is known algebraically that any abelian group is a direct sum of a divisible group and a reduced group (see Theorem 21.3 of [L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York-London, 1970]). In this paper, conditions to split off rational parts in homotopy types from a given space are studied in terms of a variant of Hurewicz map, say ρ¯:[SQn,X]→Hn(X;Z) and generalised Gottlieb groups. This yields decomposition theorems on rational homotopy types of Hopf spaces, T-spaces and Gottlieb spaces, which has been known in various situations, especially for spaces with finiteness conditions.
Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
, ,