Article ID Journal Published Year Pages File Type
9516631 Topology and its Applications 2005 16 Pages PDF
Abstract
A Tychonoff space X is RG if the embedding of C(X)→C(Xδ) is an epimorphism of rings. Compact RG-spaces are known and easily described. We study the pseudocompact RG-spaces. These must be scattered of finite Cantor Bendixon degree but need not be locally compact. However, under strong hypotheses, (countable compactness, or small cardinality) these spaces must, indeed, be compact. The main theorems shows, how to construct a suitable maximal almost disjoint family, and apply it to obtain examples of RG-spaces that are almost compact, locally compact, non-compact, almost-P, and of Cantor Bendixon degree 2. More complicated examples of pseudocompact non-compact RG-spaces ensue.
Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
, , ,