Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9516674 | Topology and its Applications | 2005 | 13 Pages |
Abstract
We show that there is a perfectly normal non-metrizable manifold if there is a Luzin subset of the real line, and that there is a countably compact perfectly normal non-metrizable manifold in any model of set-theory obtained by adding Cohen reals to a model of ZFC+â.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology
Authors
Zoltan Balogh, Gary Gruenhage,