Article ID Journal Published Year Pages File Type
9518075 Advances in Mathematics 2005 26 Pages PDF
Abstract
We discuss the geometry of the genus one fibrations associated to an elliptic fibration on a K3 surface. We show that the two-torsion subgroup of the Brauer group of a general elliptic fibration is naturally isomorphic to the two torsion of the Jacobian of a curve associated to the fibration. We remark that this is related to Recillas' trigonal construction. Finally we discuss the two-torsion in the Brauer group of a general K3 surface with a polarization of degree two.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,