Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9518879 | Bulletin des Sciences Mathématiques | 2005 | 16 Pages |
Abstract
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Liu Yirong, Huang Wentao,