Article ID Journal Published Year Pages File Type
9519600 Comptes Rendus Mathematique 2005 6 Pages PDF
Abstract
Dans cette Note on étudié les propriétés dispersives des schémas d'approximation numérique de l'équation de Schrödinger. On considère des approximations semi-discretes en différences finies. Nous démontrons d'abord que le schéma conservatif habituel ne reproduit pas les propriétés dispersives, uniformement par rapport au pas du maillage. Ceci est du aux hautes fréquences numériques artificielles. On introduit donc un schéma d'approximation visqueux dissipant ces hautes fréquences et l'on montre qu'il possède des propriétés de dispersivité uniformes par rapport au pas du maillage. Nous appliquons ce schéma à l'approximation numérique des équations de Schrödinger non-linéaires. On démontre la convergence dans la classe de non-linéarités dont l'analyse, au niveau de l'équation de Schrödinger continue, a besoin des inegalités de Strichartz. Pour citer cet article : L.I. Ignat, E. Zuazua, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,