Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9519758 | Comptes Rendus Mathematique | 2005 | 6 Pages |
Abstract
Letrk1(2)(n):=|{(x1,x2,â¦,xk)âNk|n=x12+x22+â¯+xk2,xiâ¡1(mod2),1⩽i⩽k}|,ck1(4)(n):=|{(x1,x2,â¦,xk)âNk|n=x1x2+x2x3+â¯+xkâ1xk+xkx1,xiâ¡1(4)}|,ck3(4)(n):=|{(x1,x2,â¦,xk)âNk|n=x1x2+x2x3+â¯+xkâ1xk+xkx1,xiâ¡3(4)}|. Dumont has conjectured the identity rk1(2)(n)=ck1(4)(n)â(â1)kck3(4)(n), which generalizes, in particular, the classical results of Lagrange, GauÃ, Jacobi and Kronecker on the sums of two, three and four squares. We give a combinatorial proof of Dumont's conjecture. To cite this article: B. Lass, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Bodo Lass,