Article ID Journal Published Year Pages File Type
9520545 Comptes Rendus Mathematique 2005 4 Pages PDF
Abstract
We present here quantitative versions, in dimension one, of Faltings' theorem according to which the set of K-rational points (where K is a given number field) of an Abelian variety A defined over K, which are close (with respect to a v-adic distance on K) to some K-subvariety X of A, but do not belong to X, is finite. More precisely, we treat the case where A is an elliptic curve and X is reduced to a point of A and we give (in this case) explicit bounds for the cardinal of the exceptional finite set. We consider also, more generally, not only one place v of K, but also a finite set S of places of K and the distance from the point of A to X, which takes into account all the places of S. To cite this article: B. Farhi, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,