Article ID Journal Published Year Pages File Type
9522109 Earth and Planetary Science Letters 2005 13 Pages PDF
Abstract
We use the paleotemperature equations to evaluate climate change across the K-T boundary by analyzing the oxygen isotopic composition of pedogenic carbonates from a series of stacked paleosols in west Texas. The fabrics in the calcite nodules were evaluated in order to identify soil carbonate components that have the best chance of containing isotopic information that represents ancient pedogenic conditions. The average temperature for West Texas during the time period studied is 18+ / − 0.5 °C. Two temperature excursions are recognized prior to the K-T boundary in which terrestrial temperatures increase by about 4 °C for relatively short periods of time. These short greenhouse events documented in west Texas correlate with changes in marine temperatures as well as terrestrial temperatures in North Dakota during the same time period. Latitudinal temperature gradients generated using the West Texas and North Dakota data indicate that the spatial simultaneous solution yields the most reliable temperature reconstructions of the three equations considered in this study.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , ,